Optimal Lower Power Mean Bound for the Convex Combination of Harmonic and Logarithmic Means
نویسندگان
چکیده
and Applied Analysis 3 Alzer and Qiu 27 found the sharp bound of 1/2 L a, b I a, b in terms of the power mean as follows: Mc a, b < 1 2 L a, b I a, b 1.8 for all a, b > 0 with a/ b, with the best possible parameter c log 2/ 1 log 2 . The main purpose of this paper is to find the least value λ ∈ 0, 1 and the greatest value p p α such that αH a, b 1 − α L a, b > Mp a, b for α ∈ λ, 1 and all a, b > 0 with a/ b. 2. Lemmas In order to establish our main result we need three lemmas, which we present in this section. Lemma 2.1. Let α ∈ 1/4, 1 , p 1−4α /3 ∈ −1, 0 , and f t −4αp p 1 2 p 2 tp−1 2 1− α p2 1 − p2 tp−2 2 1 − α p 1 − p 2 2 − p tp−3 12 1 − α 1 − p . Then f t > 0 for t ∈ 1, ∞ . Proof. Simple computations lead to f 1 64 81 1 − α 2 ( 56α2 23α 11 ) > 0, 2.1 lim t→ ∞ f t 12 1 − α 1 − p 8 1 − α 1 2α > 0, 2.2 f ′ t −2p1 − p)tp−4f1 t , 2.3 where f1 t −2α ( p 1 )2( p 2 ) t2 1 − α pp 12 − pt 1 − α 1 − p2 − p3 − p, f1 1 4 27 1 − α ( 148α2 − 11α 25 ) > 0, 2.4 lim t→ ∞ f1 t −∞, 2.5 f 1 t −4α ( p 1 )2( p 2 ) t 1 − α pp 12 − p − 4 27 1 − α 2 16α 7 − 4α t 4α − 1 4α 5 < 0 2.6 for t ∈ 1, ∞ . Inequality 2.6 implies that f1 t is strictly decreasing in 1, ∞ , then from 2.4 and 2.5 we know that λ1 > 1 exists such that f1 t > 0 for t ∈ 1, λ1 and f1 t < 0 for t ∈ λ1, ∞ . Hence, equation 2.3 leads to the conclusion that f t is strictly increasing in 1, λ1 and strictly decreasing in λ1, ∞ . Therefore, Lemma 2.1 follows from 2.1 and 2.2 together with the piecewise monotonicity of f t . 4 Abstract and Applied Analysis Lemma 2.2. Let α ∈ 1/4, 1 , p 1 − 4α /3 ∈ −1, 0 , and g t − 1 − α p 1 p 2 2 p 3 t p 1 p3 − αp3 − 19αp2 3p2 − 34αp 2p − 8α tp−1 1 − α p p3 − 8p2 − p 4 tp−2 1 − α 1 − p p3 5p2 − 14p 4 tp−3 4 1 − α 7 − 4p − 4p 1 − α t−1 4α 1 p t−2, then g t > 0 for t ∈ 1, ∞ . Proof. Let g1 t − 1 − α p 1 p 2 2 p 3 t3 p 1 p3 − αp3 − 19αp2 3p2 − 34αp 2p − 8α t2 1 − α p p3 − 8p2 − p 4 t 1 − α 1 − p p3 5p2 − 14p 4 4 1 − α 7 − 4p t3−p − 4p 1 − α t2−p 4α 1 p t1−p. Then simple computations lead to g t tp−3g1 t , 2.7 g1 1 16 27 1 − α ( 80α2 110α − 1 ) > 0, 2.8 g ′ 1 t −3 1 − α p 1 p 2 2 p 3 t2 2 p 1 p3 − αp3 − 19αp2 3p2 − 34αp 2p − 8α t 1 − α p p3 − 8p2 − p 4 4 1 − α 7 − 4p 3 − p t2−p − 4p 1 − α 2 − p t1−p 4α 1 − p2 t−p, g1 1 32 27 1 − α ( −16α3 38α2 176α − 9 ) > 0, 2.9 g ′′ 1 t −6 1−α p 1 p 2 2 p 3 t 2 p 1 p3 −αp3 − 19αp2 3p2 − 34αp 2p− 8α 4 1− α 7 − 4p 3 − p 2 − p t1−p − 4p 1 − α 2 − p 1 − p t−p − 4αp 1 − p2 t−p−1, g′′ 1 1 8 81 1 − α ( −128α4 896α3 288α2 5294α − 437 )
منابع مشابه
Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means
We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)
متن کاملOptimal inequalities for the power, harmonic and logarithmic means
For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملOptimal Convex Combinations Bounds of Centroidal and Harmonic Means for Weighted Geometric Mean of Logarithmic and Identric Means
In this paper, optimal convex combination bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means are proved. We find the greatest value λ(α) and the least value Δ(α) for each α ∈ (0,1) such that the double inequality: λC(a,b)+(1−λ)H(a,b) < Lα (a,b)I1−α (a,b) < ΔC(a,b)+(1−Δ)H(a,b) holds for all a,b > 0 with a = b. Here, C(a,b), H(a,b) , L(a,b) and I...
متن کاملOptimal Bounds for Neuman–sándor Mean in Terms of the Convex Combination of Logarithmic and Quadratic or Contra–harmonic Means
In this article, we present the least values α1 , α2 , and the greatest values β1 , β2 such that the double inequalities α1L(a,b)+(1−α1)Q(a,b) < M(a,b) < β1L(a,b)+(1−β1)Q(a,b) α2L(a,b)+(1−α2)C(a,b) < M(a,b) < β2L(a,b)+(1−β2)C(a,b) hold for all a,b > 0 with a = b , where L(a,b) , M(a,b) , Q(a,b) and C(a,b) are respectively the logarithmic, Neuman-Sándor, quadratic and contra-harmonic means of a ...
متن کاملOptimal Estimation of Harmonic Components Using ISFLA
In this paper a novel method based on evolutionary algorithms is presented to estimate the harmonic components. In general, the optimization of the harmonic estimation process is a multi-component problem, in which evaluation of the phase and harmonic frequency is the nonlinear part of the problem and is solved based on the mathematical and evolutionary methods; while estimation of amplitude of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014